
CONTAINER SECURITY WORKSHOP
BSIDES LONDON 2024

ABOUT US

Rory McCune
Senior Security Advocate at
Datadog
Ex-Pentester/Infosec person

Iain Smart
Principal Consultant at
AmberWolf
SecDevOps Hacker Person

Marion McCune
Independent Security
Consultant

HIGH LEVEL COURSE OBJECTIVES
Getting familiar with Containers
Securing and breaking into containerized workflows
Introduction to Kubernetes and container clustering

COURSE LOGISTICS
Ground Rules
Materials

Slides
Handouts

Questions? Just Ask

AGENDA
Introduction
Container Basics
Docker Security
Kubernetes Fundamentals
Kubernetes API Security
Kubernetes Authentication
Kubernetes Authorization
Kubernetes Admission Control
Kubernetes Networking
Kubernetes Distributions
Container Security Challenges
Conclusion

ACCESSING THE LABS
SSH

WEB (VISUAL STUDIO CODE SERVER)

ssh -i /path/to/downloaded/key ubuntu@studentx.bsidesldn.container.farm

https://studentx.bsidesldn.container.farm

Password: containersarecool123!

LAB SITE
Any command you need to run, can be copied from this site:

https://slides.bsidesldn.container.farm

CONTAINER BASICS

WHAT IS A CONTAINER?

SO WHAT IS A CONTAINER?
It depends!

Linux containers are usually just processes
Some Linux containers use VM isolation
Windows containers are either Job Objects or Hyper-V VMs

CONTAINER ISOLATION

RUNNING CONTAINERS - LINUX
Docker daemon + CLI

Install from package manager
Install from Docker

Podman
LXC/LXD

RUNNING LINUX CONTAINERS - WINDOWS/MAC
Docker Desktop
Rancher Desktop
Podman Desktop
Docker CLI + VM

EXERCISE - RUNNING CONTAINERS IN DOCKER

Please shout if this doesn't work. If it doesn't, none of our labs will

docker run hello-world

EXERCISE - SINGLE COMMAND CONTAINERS
docker run raesene/ubuntu-nettools ip addr

EXERCISE - INTERACTIVE CONTAINERS
docker run -it ubuntu:24.04 /bin/bash

EXERCISE - INTERACTIVE CONTAINERS (2)
CTRL-PQ

docker ps

docker attach <id>

EXERCISE - BACKGROUND CONTAINERS
docker run -d nginx

docker ps

docker stop <nginx_id_here>

EXERCISE - DOCKER CONTAINERS ARE JUST PROCESSES
ps -fC nginx

docker run -d --name webserver nginx

ps -fC nginx

docker exec webserver touch /my-file

sudo ls /proc/[pid]/root

MODULE CONCLUSION
Containers are just processes
There's a number of ways we can run containers using Docker or other tools

FURTHER READING
Exploring containers as processes

https://securitylabs.datadoghq.com/articles/container-security-fundamentals-part-1/

DOCKER SECURITY

DOCKER ARCHITECTURE

DOCKER ATTACK SURFACE
Docker daemon

Listen on a socket (/var/run/docker.sock) This is the default
Listen on a TCP port (2375/TCP) unauthenticated.
Listen on a TCP port (2376/TCP) authenticated.

DOCKER DAEMON AUTHENTICATION
Docker daemon can be configured to listen on a TCP port with TLS authentication.
Authentication is based on client certificates.

client credentials stored in ~/.docker by default

EXERCISE - VIEWING DOCKER DAEMON TRAFFIC
You'll need two terminals for this

Terminal 1

sudo socat -v UNIX-LISTEN:/tmp/tempdock.sock,fork UNIX-CONNECT:/var/run/docker.sock

Terminal 2

sudo docker -H unix:///tmp/tempdock.sock images

LOCAL ATTACK SURFACE
Docker Socket
/var/run/docker.sock

Default permissions are 660 (root:docker)
Containerd Socket
/run/containerd/containerd.sock

Default permissions are 600 (root:root)

DOCKER SECURITY MODEL
Relatively simple. If you have Docker access, you have root.*
All of the layers of isolation that containers provide can be removed by anyone with the ability to create
containers.

PRIVESC WITH DOCKER SOCKET ACCESS
Once you have access to the Docker socket on a host getting root should be trivial
There's a number of different ways of doing it but the easiest is "The Most Pointless Docker Command Ever"

EXERCISE - PRIVESC WITH DOCKER SOCKET ACCESS
docker run -ti --privileged --net=host --pid=host --ipc=host --volume /:/host busybox chroot /host

CONTAINER BREAKOUT
From inside a container, there's a number of ways you might be able to break out

mounted Docker socket (use the "most pointless Docker command")
Other "sensitive" mounts (e.g. /etc/shadow)
privileged containers
kernel exploits

EXERCISE - CONTAINER BREAKOUT FROM A PRIVILEGED CONTAINER

Edit files as needed (e.g. /host/etc/shadow)

docker run -ti --privileged ubuntu:24.04 /bin/bash

mount

mkdir /host

mount /dev/nvme0n1p1 /host

CONTAINER IMAGE SECURITY
Most container images run as UID0 by default

This can, and should, be changed where possible
Container Images are essentially mini Linux distributions (in most cases)

OS Libs and language library need patching just like any other OS.

CONTAINER SECURITY SCANNERS
Wide range of options available

Trivy
Grype
...

Can scan images for vulnerabilities
Some can also scan for mis-configurations

EXERCISE - SCANNING AN IMAGE WITH TRIVY
trivy image ubuntu:24.04

trivy image --ignore-unfixed ubuntu:24.04

trivy image --image-config-scanners misconfig ubuntu:24.04

MODULE CONCLUSION
Docker has a relatively simple security model.
Users who have Docker rights will be able to gain root
"The most pointless Docker container" is actually the most useful one.

FURTHER READING
Container Security Fundamentals
the most pointless docker command ever
Fun with privileged container breakout
Restricting the Docker API with a reverse proxy

https://securitylabs.datadoghq.com/articles/?s=container%20security%20fundamentals
https://zwischenzugs.com/2015/06/24/the-most-pointless-docker-command-ever/
https://raesene.github.io/blog/2023/08/06/fun-with-privileged-container-breakout/
https://raesene.github.io/blog/2021/09/05/restricting-docker-access-with-a-proxy/

KUBERNETES FUNDAMENTALS

WHAT IS KUBERNETES?
Container orchestration platform
Started by Google now managed by the CNCF
Not the only way to orchestrate containers, but the main one.

KUBERNETES ARCHITECTURE

KUBERNETES RESOURCES
Base Kubernetes has 50+ resources types.
Fortunately you don't need to know about, or use, most of them

kubectl api-resources

KUBERNETES COMPONENTS - API SERVER
Core of a Kubernetes cluster
Manages communication with all other components
Presents an HTTP API for interaction

443/TCP usually
Sometimes 6443/TCP or 8443/TCP

KUBERNETES COMPONENTS - SCHEDULER
Lives in the control plane
Handles deployment of pods to nodes
All communications via the API server
Typically listens on 10259/TCP on the localhost interface of the control plane node(s)
Has an unauthenticated /healthz endpoint
Has authenticated /configz & /metrics endpoints.

KUBERNETES COMPONENTS - CONTROLLER MANAGER
Lives on the control plane
Actually a collection of different controllers
Works via the API Server
Typically listens on 10257/TCP
Has an unauthenticated /healthz endpoint
Has authenticated /metrics, /configz, /debug endpoints

KUBERNETES COMPONENTS - ETCD
Key/value store
Can be either a single instance or a cluster of it’s own
Responsible for storing cluster state
2379/TCP – client communication
2380/TCP – inter-cluster communications.
2381/TCP - /healthz endpoint
Technically can be used by not-Kubernetes projects, but rarely is.

KUBERNETES COMPONENTS - KUBELET
Lives on most/all nodes
listens on 10250/TCP
listens on 10248/TCP /healthz' endpoint
Old clusters may have 10255/TCP for the Kubelet read-only port
Manages the Container runtime

Containerd, CRI-O, Docker, or others...

KUBERNETES COMPONENTS - KUBE-PROXY
Network Proxy*
Runs on each node
Handles the mapping of services to pods
Forwards traffic to containers in the cluster
/healthz port 10256/TCP
/metrics, /configz port 10249/TCP

WHAT KUBERNETES DOESN'T DO OUT OF THE BOX
In some areas the Kubernetes designers took the position that they would delegate an area to external
software
For each of these an interface was designed so that a consistent API would be available.
Main ones are:

CRI - Container Runtime Interface.
CNI - Container Network Interface.
CSI - Container Storage Interface.

KUBECTL
This is the main tool used to manage and interact with clusters
At least somewhat modelled after the Docker client.
has a wide range of commands for container lifecycle management
Help system is pretty good. --help is your friend!

KUBECTL

Discussion (debate) with @boredabdel at #AllThingsOpen about how to say
#kubectl. First time we have heard kube sea turtle🐢 🤣.#ato #kubernetes

#k8s

— tiffany jernigan 🦣 () @tiffanyfay.dev Oct 29, 2024 at 18:35

https://bsky.app/profile/did:plc:ji5aag52b46o3ebj5exo45na?ref_src=embed
https://bsky.app/profile/did:plc:ji5aag52b46o3ebj5exo45na/post/3l7obgv4gv726?ref_src=embed

ACCESSING CLUSTERS - KUBECONFIG
Kubeconfig is the main way to access clusters
A file that, by default, lives in ~/.kube/config
Contains definitions of one or more clusters and one or more users
Sometimes has embedded credentials, sometimes references external credentials

INSPECTING A KUBECONFIG
3 sections plus metadata

Cluster definitions handle the network bits
User data is your identity and authentication
Contexts pair users to clusters

You should all have a rancher kubeconfig on your machines

VIEW YOUR KUBECONFIG
cat ~/.kube/config

INTRODUCTION TO RANCHER
Rancher is a managed Kubernetes distribution
No affiliation, it's just shiny
Accessible at
studentx::Changeme123!

https://rancher.bsidesldn.container.farm

https://rancher.bsidesldn.container.farm/

EXERCISE - RUNNING COMMANDS IN A CLUSTER
kubectl get pods

EXERCISE - RUNNING A POD
kubectl run --image nginx {yourinitials}-nginx

CONCLUSION
Kubernetes is a relatively complex system compared to Docker
It's important to understand the components and how they interact
It's important to understand how to access the cluster

FURTHER READING
Kubernetes Core : Jazz improv over orchestration
Working with the Kubernetes API
Taking a look at the kube-proxy API

https://blog.heptio.com/core-kubernetes-jazz-improv-over-orchestration-a7903ea92ca
https://iximiuz.com/en/series/working-with-kubernetes-api/
https://raesene.github.io/blog/2024/06/16/Taking-A-Look-At-The-Kube-Proxy-API/

KUBERNETES SECURITY

KUBERNETES ATTACKS
Three Threat Models

External Attacker
Compromised Container
Malicious User

EXTERNAL ATTACKER
Attack Surface - Cloud Hosted

Likely just the API Server
Attack Surface - On-Premises - A range of potential ports

API Server
Kubelet
etcd

FINDING KUBERNETES CLUSTERS ONLINE
Shodan, Censys, BinaryEdge, etc.
Censys coverage is the best at the moment

EXERCISE - FINDING KUBERNETES CLUSTERS ONLINE
Go to https://search.censys.io

services.tls.certificates.leaf_data.names="kubernetes.default.svc.cluster.local"

services.kubernetes.version_info.git_version="*"

services.kubernetes.pod_names="*"

https://search.censys.io/

API SERVER ACCESS
Usually authenticated, but not always
On older clusters the insecure-port can be enabled
On newer clusters it's possible to bind rights to the system:anonymous user to allow unauthenticated
access.

EXERCISE - SETTING UP A KIND CLUSTER

Kubernetes in Docker (KinD) does what it says on the tin
Excellent for security testing and trialling things
Great for deploying older vulnerable clusters

kind create cluster --name=insecurecluster --image=kindest/node:v1.19.16 --config ~/kind_configs/insecurecluster.yaml

EXERCISE - API SERVER ACCESS
curl http://localhost:8080/

curl http://localhost:8080/api/v1/namespaces/kube-system/pods | jq

KUBELET API
Listens on port 10250 by default
Controls access to containers on a given host
Can be used to run commands in a container
Largely undocumented

EXERCISE - KUBELET API
curl -k https://localhost:10250/

curl -k https://localhost:10250/pods | jq

curl -k https://rancher.bsidesldn.container.farm:10250/

KUBELET API - HANDY FOR ATTACKERS
Direct access to the Kubelet bypasses admission control
Also bypasses audit logging
Service Accounts with node/proxy rights can access the API directly

KUBELET READ-ONLY API
Listens on port 10255 by default
Deprecated for some time buuut can still be found
Still enabled by default on GKE.

EXERCISE - KUBELET READ-ONLY API

Only information disclosure, but still useful for attackers.

curl http://localhost:10255/pods | jq

ETCD
Runs on port 2379 by default
Stores all cluster state
Accessible over gRPC and HTTP
Usually not accessible without authentication

CONCLUSION
Kubernetes has a number of APIs that can be accessible.
In modern clusters it shouldn't be possible to access them without authentication.
Worth checking though, just in case!

FURTHER READING
Kubernetes on the Internet
Kubernetes API Security
A final Kubernetes Census

https://raesene.github.io/blog/2022/07/03/lets-talk-about-kubernetes-on-the-internet/
https://securitylabs.datadoghq.com/articles/kubernetes-security-fundamentals-part-2/
https://raesene.github.io/blog/2024/02/17/a-final-kubernetes-censys/

KUBERNETES AUTHENTICATION

KUBERNETES AUTHENTICATION
Inbuilt Authentication Options

Static Token (Token Auth)
Client Certificates
Service Account Tokens

Authentication Options that require outside systems
OpenID Connect Tokens
Webhook Tokens
Authenticating Proxy

N.B. Kubernetes does not in any circumstances actually have a user database… (well apart from the one
they don’t talk about)

STATIC TOKEN AUTHENTICATION
Static file on disk containing credentials
Requires a restart of the API server to make changes
Credentials are held in the clear on disk

CLIENT CERTIFICATE AUTHENTICATION
Client certificates signed by the main Kubernetes CA
User and group information encoded into the certificate
Encoded in to Kubeconfig files for user authentication
possible to do manually with unmanaged Kubernetes, but not recommended

EXERCISE - AUTOMATING CLIENT CERT CREATION
We can use Teisteanas to automate the creation of client certificates
Uses the CertificateSigningRequest (CSR) API to create the certificates

Creates a file called user2.config in the current directory
then :-

https://github.com/raesene/teisteanas

teisteanas --username user2

kubectl --kubeconfig user2.config get pods

https://github.com/raesene/teisteanas

BRIEF ASIDE - CERTIFICATE MANAGEMENT
One of the generally unsolved problems in Kubernetes security
Default setups store the certificate authority private key in the clear on disk on the API server
Access to this file provides a persistent cluster backdoor

Default CA certificate lifetime is 2-10 years
Certificate authentication is required for operation

Component to component authentication.
Protecting the key is very important.

USER TOKENS
Look at your Kubeconfig file
There's a token that Rancher generates and uses
This is Rancher-specific, but similar configurations are common

SERVICE ACCOUNT TOKENS
Intended for use by applications running in the cluster
In older versions of k8s, these were non-expiring static tokens stored as secret objects
In newer version of k8s, they are short lived tokens generated by the API server

EXERCISE - AUTHENTICATING WITH A SERVICE ACCOUNT TOKEN
kubectx local

kubectl create token default

tocan default

kubectl --kubeconfig default.kubeconfig get po

ATTACKING AUTHENTICATION
Typically the best way to do this is stealing Kubeconfig files
Depending on the authentication method used it may be static credentials
Temporary access to admin creds allows for new users to be created

Notable exception of EKS where this is trickier

MODULE CONCLUSION
Kubernetes has a number of authentication options
In-built options are not suitable for production
For external use, options tend to vary per distribution

FURTHER READING
Anonymous access to Kubernetes
Kubernetes authentication
Kubernetes persistence with Teisteanas and Tocan

https://raesene.github.io/blog/2023/03/18/lets-talk-about-anonymous-access-to-Kubernetes/
https://securitylabs.datadoghq.com/articles/kubernetes-security-fundamentals-part-3/
https://raesene.github.io/blog/2022/12/21/Kubernetes-persistence-with-Tocan-and-Teisteanas/

KUBERNETES AUTHORIZATION

INTRODUCTION
Once we've authenticated the user, we need to sort authorization
Again a number of options

AlwaysAllow (this is bad)
RBAC (Role Based Access Control) - Current main option used inside Kubernetes
Webhook - Allows delegation of AuthZ decisions to an external service.

KUBERNETES RBAC
Makes use of roles which describe a set of permissions to a resource and rolebindings which bind a role to a
set of subjects
subjects can be of three types

Users
Service accounts
Groups

KUBERNETES RBAC - SCOPE
Resources are scoped in one of two ways

Specific namespace
Cluster-wide resources

KUBERNETES RBAC - BUILT-IN ROLES
There are a number of built-in clusterroles
Used to provide rights to service accounts
Also provide some generic roles (e.g. cluster-admin)

RBAC - ASSIGNING RIGHTS
ClusterRoleBinding --> ClusterRole == Rights assigned at cluster level
RoleBinding --> Role == Rights assigned to one namespace
RoleBinding --> ClusterRole == Rights assigned to one namespace

KUBERNETES RBAC - DEFAULT ROLES

EXERCISE - RBAC CLUSTER ROLES AND BINDINGS
kubectx kind-insecurecluster

kubectl get clusterroles

kubectl get clusterrolebindings

EXERCISE - USER RIGHTS
kubectl --kubeconfig=user2.config get po -n kube-system

EXERCISE - ASSIGNING RIGHTS TO USERS
kubectl create clusterrolebinding user2-binding --clusterrole=cluster-admin --user=user2

EXERCISE - CHECKING NEW USER RIGHTS
kubectl --kubeconfig=user2.config get po -n kube-system

RBAC GOTCHAS
Read-only access can be dangerous (specifically for secrets and pod execution)
Allowing Pod creation leads to privesc through a variety of routes (even with admission control restrictions
enabled)
Allowing impersonation rights
K8s docs on privilege escalation https://kubernetes.io/docs/concepts/security/rbac-good-practices/

https://kubernetes.io/docs/concepts/security/rbac-good-practices/

RBAC GOTCHA - THIRD PARTY INSTALLS
Always be careful before applying RBAC rights to clusters as part of product installation
They may do something you don't want like bind the default service account to cluster-admin

 has an example withhttps://github.com/spekt8/spekt8
https://raw.githubusercontent.com/spekt8/spekt8/master/fabric8-rbac.yaml

https://github.com/spekt8/spekt8
https://raw.githubusercontent.com/spekt8/spekt8/master/fabric8-rbac.yaml

EXERCISE - KUBERNETES PERMISSION AUDITING - MANUAL
kubectl get clusterrole cluster-admin -o yaml

kubectl get clusterrolebinding cluster-admin -o yaml

EXERCISE - KUBERNETES PERMISSION AUDITING - KUBECTL
kubectl auth can-i get pods

kubectl auth can-i --list

kubectl auth can-i --as ServiceAccount:kube-system:node-controller get pods

RBAC AUDITING - TOOLS!
Good range of tools to help assess RBAC rights
Quite a few unmaintained (surprise :P)
rbac-tool is a good one

https://github.com/alcideio/rbac-tool

https://github.com/alcideio/rbac-tool

EXERCISE - KUBERNETES PERMISSION AUDITING - RBAC-TOOL
rbac-tool who-can get secrets

rbac-tool analysis

ATTACKING AUTHORIZATION
Depending on your rights, you can escalate privileges
Often users will have create pod rights
Opportunities for privesc.

EXCERCISE - GETTING ROOT ON A NODE
kubectl create -f /home/ubuntu/manifests/noderootpod.yaml

kubectl exec -it noderootpod -- chroot /host

CONCLUSION
RBAC is the main authorization mechanism in Kubernetes
Some risks for cluster operators of privilege escalation
Without more controls most users can compromise clusters using standard Kubernetes functionality

FURTHER READING
Kubernetes RBAC good practices
Kubelet authorization
Auditing RBAC
When is read-only not read-only
Kubernetes security fundamentals: authorization

https://kubernetes.io/docs/concepts/security/rbac-good-practices/
https://raesene.github.io/blog/2023/04/08/lets-talk-about-kubelet-authorization/
https://raesene.github.io/blog/2022/08/14/auditing-rbac-redux/
https://raesene.github.io/blog/2024/11/11/When-Is-Read-Only-Not-Read-Only/
https://securitylabs.datadoghq.com/articles/kubernetes-security-fundamentals-part-4/

KUBERNETES ADMISSION CONTROL

ADMISSION CONTROLLERS
Once Authentication and Authorization gates are passed, there is one more step before a resource is
deployed to a cluster, Admission controllers.
Admission controllers can modify workloads before they launch or block their them.

TWO TYPES OF ADMISSION CONTROLLERS
Mutating Admission Controllers

Modify the resource being created
Validating Admission Controllers

Validate the resource being created

POD SECURITY WITH ADMISSION CONTROLLERS
One of the main roles of admission control is to enforce security on pods
Helps to stop the attack we used in the authorization section
In modern clusters there are a couple of main ways of doing this.

Pod Security Admission
External Admission Controllers
Validating Admission Policy

POD SECURITY ADMISSION
Works by applying one of three levels of security to each namespace in a cluster

Privileged
Restricted
Baseline

Not massively flexible but built-in to Kubernetes

VALIDATION ADMISSION POLICY
Supported since Kubernetes 1.30
More granular than Pod Security Admission
Uses Common Expression Language (CEL)
Does not support resource mutation

EXTERNAL ADMISSION CONTROLLERS
More flexible than Pod Security Admission
Can be used to enforce a wide range of constraints on resources in a cluster
Some popular examples:

Open Policy Agent Gatekeeper
Kyverno

EXERCISE - POD SECURITY ADMISSION
kubectx local

kubectl create -f /home/ubuntu/manifests/noderootpod.yaml

MODULE CONCLUSION
Admission controllers are a key part of the Kubernetes security model
The in-built options are easy to use but not very flexible
External admission controllers are more flexible but require more work to setup and maintain

FURTHER READING
Kubernetes security fundamentals: Admission Control

https://securitylabs.datadoghq.com/articles/kubernetes-security-fundamentals-part-5/

KUBERNETES NETWORKING

OVERVIEW
Kubernetes has a couple of network features that are "interesting"
Typically the networking is built off of Linux features
Bridges + iptables
Also all cluster nodes are routers, so if you're on the same LAN as them you can route traffic via them :)

CNI
Kubernetes does not provide networking itself
Users use Container Network Interface Plugin(s) with each cluster
Exactly how networking works, will depend on the plugin(s) used.

CNI OPTIONS
Calico
Cilium
(Azure/AWS/GCP) networking
...

GENERAL NETWORKING MODEL

SERVICE NETWORKING
Pods come and go, so we need another object for persistent networking
this is the service object in Kubernetes
All they actually are is iptables rules!
redirect traffic to one of the currently running pods.

EXERCISE - KUBERNETES IP ADDRESSES
kubectx kind-insecurecluster

kubectl get pods -o wide

kubectl get svc

docker exec insecurecluster-control-plane ip addr

KUBERNETES & DNS
Another networking service that gets heavy use in Kubernetes is DNS
Used for service discovery
Predictable naming is also useful for enumeration!

EXERCISE - ENUMERATING KUBERNETES RESOURCES WITH DNS
kubectl run -it dnstest --image=raesene/alpine-containertools -- /bin/bash

/scripts/k8s-dns-enum.rb

EXERCISE - KUBERNETES IPTABLES

Notice the Kubernetes service IP addresses and ports

docker exec -it insecurecluster-control-plane bash

iptables -L -n -t nat

EXERCISE - NETWORK POLICIES - SETUP CLUSTER
kind create cluster --name=netpol --config=/home/ubuntu/kind_configs/kind-netpol-config.yaml

cilium install

RESTRICTING ACCESS IN A CLUSTER
By default all pods in a cluster can communicate with each other
If we want to restrict this, we can use Network Policies
Essentially act a bit like Firewall ACLs but we can use Kubernetes names for source and destination

EXAMPLE NETWORK POLICY
kind: NetworkPolicy

apiVersion: networking.k8s.io/v1

metadata:

 name: web-deny-all

spec:

 podSelector:

 matchLabels:

 app: web

 ingress: []

EXERCISE - NETWORK POLICIES - DEPLOYING THE APP
kubectl run web --image=nginx --labels app=web --expose --port 80

kubectl run -it netpoltest --image raesene/alpine-containertools /bin/bash

EXERCISE - NETWORK POLICIES - TESTING THE APP
curl http://web

exit

EXERCISE - NETWORK POLICIES - APPLY A NETPOL
kubectl apply -f ~/netpol/deny-web.yaml

kubectl attach -it netpoltest

curl http://web

NETWORK POLICY GOTCHAS
Use of "hostNetwork: true" will bypass network policies
Network policies are not enforced by default
Network policies are enforced by the CNI plugin, so the exact behaviour will depend on the plugin used.

CONCLUSION
Kubernetes networking can be a bit complex due to the number of options
At base a lot of it is just Linux network features
Network policies are needed unless you like that old-school Flat LAN feel

FURTHER READING
Kubernetes is a router
The Many IP Addresses of Kubernetes
Exploring A Basic Kubernetes Network Plugin
Mastering container networking

https://raesene.github.io/blog/2021/01/03/Kubernetes-is-a-router/
https://raesene.github.io/blog/2024/11/01/The-Many-IP-Addresses-Of-Kubernetes/
https://raesene.github.io/blog/2024/11/07/Exploring-a-basic-Kubernetes-Network-Plugin/
https://iximiuz.com/en/series/mastering-container-networking/

KUBERNETES DISTRIBUTIONS

OVERVIEW
Very few people run base Kubernetes in production
Most times a distribution is used
There are ... a lot ... of them

TYPES OF KUBERNETES DISTRIBUTIONS
Managed Kubernetes

AWS EKS, Azure AKS, Google GKE
Unmanaged Kubernetes

Kops, Kubespray, Kubeadm
"Platforms"

OpenShift
Rancher
Tanzu

MANAGED KUBERNETES
No access to the control plane nodes
Provider chooses the configuration of the control plane
Some options are exposed in the providers UI

This depends on the provider!

MANAGED KUBERNETES - DEFAULTS
Defaults vary by provider
Not always the most secure
The big 3 all put the API server on a public IP by default
Auditing may or may not be enabled
...

HONOURABLE MENTION - OPENSHIFT
Red Hat OpenShift needs it's own slide
Large platform built on top of Kubernetes
highest level of variance from "base" Kubernetes
Different security primitives

SCCs
Lots and Lots of operators

CONCLUSION
It's important to know that there are different distributions
The implementations vary quite a bit
Defaults are often different

FURTHER READING
Certified Kubernetes Distributions

https://www.cncf.io/training/certification/software-conformance/#logos

CONTAINER SECURITY CHALLENGES

OUT OF THE BOX SECURITY
By default it's optimized for ease of use not security.
Hardening is needed at the Docker and Kubernetes level
RCE as a service!

THREAT MODEL DIFFERENCES
Some open source tools do not have the same threat model as enterprise software

Places where having no auth. is not considered a problem
No support for non-repudiation

Always consider how your threat model does/doesn't match up

CONTAINERS ARE EPHEMERAL
We've seen that containers start and stop quickly and often leave no traces
Causes problems with logging
Causes problems with forensics

CONTAINER TECH IS (RELATIVELY) NEW
This is still new tech. to a lot of companies
Problems with fitting it in to existing architectures

THERE'S A LOT OF VARIETY
Over 100 different distributions
Many different versions with different settings
Lots of plugin and software variety

WHO BUILT YOUR CONTAINER?
Containers are just someone else's code on the internet
It's important to know where your images come from
Insert rant about image signing?

COMPLIANCE!
There are now some standards

CIS benchmark
NSA Hardening guide
PCI Guidance

They cannot cover all the scenarios
This causes problems if compliance is dogmatic

CONCLUSION
Containers introduce new security challenges
The variety of the ecosystem definitely presents some problems
The fast moving nature of the tech. also can be challenging.

CONCLUSION

THINGS TO REMEMBER
A lot of what containers do is just linux (well apart from Windows containers)
once you've got a handle on the core technologies it's easier to get started with new ones

MORE INFORMATION!
container-security.site
talks.container-security.site
#SIG-Security & #kubernetes-security on Kubernetes slack
#TAG-Security on CNCF slack

THANKS!
Feedback always welcome

Rory McCune

@
| @mccune.org.uk

Iain Smart

@smarticu5.bsky.social

Marion McCune

@marionmccune.bsky.social
rorym@mccune.org.uk

raesene@infosec.exchange
iain@iainsmart.co.uk marion.mccune@scotsts.com

mailto:rorym@mccune.org.uk
mailto:raesene@infosec.exchange
mailto:iain@iainsmart.co.uk
mailto:marion.mccune@scotsts.com

